
openEHR Reference Model Java ITS

Revision: 1.5

Pages: 18

Author: Rong Chen

rong@acode.se

ACODE HB, Sweden

http://www.acode.se

Revision History

Rev. Details Who Completed

1.5 Added openEHR image R Chen 02/09/06

1.4 Incorporated T Beale's comments R Chen 01/12/06

1.3 Some minor updates R Chen 12/06/05

1.2 Added Demographic and EHR

Extract information model

R Chen

03/13/05

1.1 Switched target JDK from 1.4 to 5.0 R Chen

10/15/04

1.0.2 “DV_” prefix kept and renamed to

“Dv”

R Chen

09/07/04

1.0.1 Added “Implementations from Java

API”, separated “immutability from

value object” and some minor

corrections

R Chen

08/27/04

1.0.0 Initial writing R Chen 08/11/04

Acknowledgments

Thanks to Thomas Beale and others from openEHR for the original

work, and Thomas Beale particularly for valuable discussions and

the initial invitation to write this document.

Thanks to Göran Pestana, my partner at ACODE HB Sweden for the

initial review and support.

1 Introduction

1.1 Purpose

This document provides recommendations and guidelines for Java

implementation of the openEHR Reference Model, which at the

time of writing consists of the Reference Information Model and the

Archetype Model. The Reference Information Model includes Data

Types, Demographic, Common, Support, Data Structures, EHR and

EHR Extract model.

1.2 Related Documents

• The openEHR Data Types Information Model

• The openEHR Common Information Model

• The openEHR Demographic Information Model

• The openEHR Support Information Model

• The openEHR Data Structures Information Model

• The openEHR EHR Information Model

• The openEHR EHR Extract Information Model

• The openEHR Archetype Object Model

• The openEHR Archetype Definition Language

• The openEHR Archetype Profile

2 Background

2.1 Scope

This document is based on the work on a Java implementation of

the openEHR Reference Model. The code has been released by

ACODE under open source license and later adopted by the

openEHR foundation as the reference Java implementation.

The recommendations presented here only apply to perspective

Java implementation of the openEHR Reference Model. No

presumption about usage of the reference model, e.g. used within

desktop application or server-side component has been made. The

idea is that the reference model implementation should be generic

enough to be used in different application context. There is no

design choice made for specific persistence or presentation

solution either. Since in an archetype-based system, the reference

model probably should not have any dependency on either the

presentation layer or the persistence layer.

2.2 Guideline Criteria

The openEHR Reference Model is designed to be programming

language independent. It has been developed according to the UM

semantics, and implemented thus validated in Eiffel programming

language.

There are a number of things one needs to bear in mind when

implements the openEHR Reference Model in Java. Some of them

are cosmetic issues, like naming conventions, some of them are

more profound, for example, Design By Contract in Eiffel, which is

heavily used to reinforce the reference model and but not

supported natively in Java. In general, the goal is to implement the

openEHR model in Java as faithful to the original specifications as

possible and at same time keep the Java look-and-feel.

1. Java implementation must be able to present the information that

can be presented by the original class model in the

specifications.

2. It should look similar to the original model in terms of class

names, attribute names and method signatures, so that mapping

between the Java implementation and the original model can be

easily made.

3. Java implementation should look like Java. That is it should follow

Java standards, naming conventions and idioms, make use of

both built-in and well-known APIs from third parties instead of

re-inventing the wheel.

2.3 Java Platform

The Java platform targeted here is Java 2 Platform, Standard

Edition, v5.0 mainly because of newly added support of generic

types.

The Enterprise Edition is not required to implement the reference

model, but it will be very useful in implementing the Service Model.

The 'assert' keyword added since J2SE v 1.4 could be useful to

implement DBC like pre-conditions (see more in DBC section).

3. Assumed Types

The list of assumed types are quoted from openEHR Support

Information Model document (support_im-1_1.pdf). The mapping to

Java types[10] is listed below:

Assumed Type Java Type Comment

Any Object super class of all Java

types

Boolean boolean, Boolean primitive type or

class

Character char, Character primitive type or

class

Integer int, Integer primitive type or

class

Integer_64 long, Long primitive type or

class

Real float, Float primitive type or

class

Double double, Double primitive type or

class

String String Unicode is natively

supported

Container java.util.Collection In Java, Container is

Assumed Type Java Type Comment

not parent of arrays

Array<T> T[] supported as first-

class objects

List<T> java.util.List subclass of Collection

Set<T> java.util.Set subclass of Collection

Bag<T> org.apache.commons.c

ollections.bag

from Apache

Software Foundation

Interval not supported See Appendix.B for

sample

implementation.

4. Naming Convention

In general, naming of packages, classes, methods and attributes

should follow the Java Naming Convention[11]

• packages

DATA_TYPES.BASIC -> datatypes.basic

In reality, one would put a full domain name in the path to make

it unique, something like se.acode.openehr.datatypes.basic

• classes

e.g. DATA_VALUE -> DataValue

For all the subclasses of DataValue in datatypes package, “DV_”

prefix of the class name is kept but renamed to “Dv” to follow the

Java naming convention.

• fields

e.g. calendar_alignment -> calendarAlignment

• methods

e.g. is_strictly_comparable_to() -> isStrictlyComparableTo()

• accessors

For fields (attributes) that are declared by the specification, they

should be implemented as private fields and public

accessors(getters) should be provided to access them.

5. Generic Types

Generics of openEHR Reference Model is implemented directly by

Java generics, which is introduced since Java 5.0.

6. Design By Contract

There are several Java implementations of Design By Contract,

e.g. iContract, which could be used in Java environment. The

recommendations here could be used without involvement of any

Java implementation of DBC.

1. Pre-conditions

Pre-conditions for public methods that are related to parameters

should be implemented as parameter validation and

IllegalArgumentException or its subclass should be thrown when

pre-conditions can not be satisfied. For non-public methods, pre-

conditions can be implemented as assertions using keyword

'assert', which is added into Java since Java1.4. It worths to

mention that pre-conditions for public methods that belong to

parameter validation should not be implemented as assertions

because these contracts must be obeyed whether assertions are

enabled or not. Also bad parameters to the public methods

should result in runtime exception instead of assertion failure.

See Appendix.B for example.

2. Post-conditions

Unit testing can be used to verify the result after execution of

methods. Compared with DBC post-conditions, unit testing tests

the result of specific condition by supplying known test data,

while DBC post-conditions are more general. Because of that, it

is probably easier to write unit tests than post-conditions[3].

3. Invariants

Invariants can be implemented as parameter validation in the

constructors if the object is immutable. Since the internal state

does not change during the lifetime of any immutable object.

Otherwise invariants can also be implemented as methods and

put at strategic places.

7. Value Object

Most of the datatypes classes are essentially Value Objects[2],

whose purpose is to pass values around. The equality of Value

Object is not based on the identity, but based on the values of

contained fields.

Therefore, override both equals() and hashCode() for all Value

Objects. Use the values of all relevant fields in equals() and

hashCode() and obey general contract of both methods.

See Appendix.B for example

8. Immutable Object

Most of classes in the reference model are good candidates of

immutable objects. Immutable objects are easier to design and

implement than mutable ones. They are also easier to use and

much safer. To make a class immutable, follow the following

rules[15]:

1. Make all fields private and final

2. Make the class final

3. Only provide accessors methods to fields. Do not provide any

mutators (setters).

4. Make defensive copies in constructors and accessors when fields

refer to mutable objects, e.g. instances of Collection and its

subclasses. For collection instances, one could use

java.uitl.Collections.unmodifiableXXX() methods to get

unmodifiable view of the collection.

See Appendix.B for example

9. Exceptions

Parameter validation in public methods and constructors should

throw IllegalArgumentException or its subclass if the specified pre-

conditions can not be satisfied. It is important to throw Exceptions

that subclass RuntimeException instead of checked Exceptions to

indicate that the failure is unrecoverable.

See Appendix.B for example

10. Multiple Inheritance

Multiple inheritance is not directly supported in Java. Luckily, there

are few classes in the openEHR reference model that inherit

multiple super classes. When required, one of the parent classes

can be chosen to be implemented as the super class in Java, the

others should then be implemented as fields. The criterion for

choosing the parent class is based on its substitutability. For

example, all subtypes of DataValue should be substitutable for

DataValue, so any class that inherits DataValue really has to inherit

it. The class datatypes.quantity.Interval is the only class in the

entire Data Types model that multiply inherits - it also inherits

assumed type Interval - but this is for implementation - no

substitutability is needed. So it should inherit DataValue and

include an instance of assumed type Interval as a field.

11. Abstract attributes

Abstract attributes is not supported in Java. The solution is declare

it as abstract method and return the required type, then the

subclass will simply implement it and return more specialized

types.

12. Operator Overloading

Operator overloading is not supported in Java, therefore it should

be implemented as method in the class. e.g.

infix '<' implemented as compareTo() of interface Comparable

infix '+' implemented as add() method

infix '-' implemented as substract() method

prefix '-' implemented as negate() method

13. Index

Index values of array and List always starts with 0 in Java. For

example, the Java implementation of ithItem() method in ItemList

takes index starting from 0.

14. String Representation

All classes should override the method toString() to provide human

readable information. When appropriate, toString() should also

present all interesting information contained in the object. See

Appendix.B for example.

14.1 XML representation

XML based string representation can be useful and it should

probably be required to be implemented for all Data Types classes.

The XML string should include all non-calculated values from the

object so that it would be possible to reconstruct the object later by

parsing the XML string. The format of the XML string needs to be

standardized by the openEHR, but one possibility is to use the

attribute name as element name thus generating and parsing XML

string can be automated by using Java Reflection API.

15. Comparable

Comparable interface should be implemented if instance of the

class has natural order, e.g. datatypes.quantity.Ordered. By

implementing Comparable interface, one could take advantage of

many generic algorithms and collection implementations provided

by the Java platform[15].

16. Implementations from Java API

There are existing classes from Java platform already provide concrete

implementation of classes defined by openEHR.

• java.util.Calendar for implementation of classes in

datatypes.quantity.datetime package, more specifically DvDate,

DvTime and DvDateTime are simply thin wrappers of java.util.Calender

• java.util.TimeZone for field timezone in class

datatypes.quantity.datetime.WorldTime

• java.net.URI for implementation of class datatypes.uri.URI

• org.ietf.jgss.Oid (included in J2SE1.4) for implementation of

support.identification.ISO_OID

• java.util.UUID (included in J2SE1.5) for implementation of class

support.identification.UUID

17. External APIs

There are well known external open source Java APIs that can

provide solid implementation or test framework.

1. JUnit, a unit testing framework for Java.

http://junit.org

2. Jakarta commons-lang, provides highly reusable static utility

methods, chiefly concerned with adding value to java.lang and

other standard core classes.

http://jakarta.apache.org/commons/lang/

3. Jakarta commons-collections, contains implementations,

enhancements and utilities that complements the Java

Collections Framework

http://jakarta.apache.org/commons/collections/

4. JDOM, XML API for manipulate XML in Java way,

http://www.jdom.org

http://junit.org/
http://www.jdom.org/
http://jakarta.apache.org/commons/collections/
http://jakarta.apache.org/commons/lang/

Appendix

A. References

A.1 General

1. Gamma E, Helm R, Johnson R, Vlissides J. Design patterns of

Reusable Object-oriented Software. Addison-Wesley 1995

2. Fowler M, Patterns of Enterprise Application Architecture

Addison Wesley 2003

3. Weirich J, Design by Contract and Unit Testing,

http://onestepback.org/index.cgi/Tech/Programming/DbcAndTesti

ng.html

A.2 openEHR

4. Beale T et al, Design Principles for the EHR

5. Beale T et al, openEHR Data Types Information Model

6. Beale T et al, openEHR Support Information Model

7. Beale T et al, openEHR Common Information Model

8. Beale T et al, openEHR Data Structures Information Model

9. Beale T et al, openEHR EHR Information Model

10.Beale T et al, openEHR Archetype Object Model

11.Beale T et al, openEHR Archetype Definition Language

A.3 Java

12. Java Language Specification, 2nd

http://java.sun.com/docs/books/jls/

13. Java Naming Convention

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.h

tml

14. Eckel B, Thinking In Java, Prentice Hall PTR 1998

15. Bloch J, Effective Java, Addison-Wesley 2001

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
http://java.sun.com/docs/books/jls/
http://onestepback.org/index.cgi/Tech/Programming/DbcAndTesting.html
http://onestepback.org/index.cgi/Tech/Programming/DbcAndTesting.html

B. Sample implementation of Interval

package se.acode.openehr.support.basic;

import org.apache.commons.lang.builder.EqualsBuilder;

import org.apache.commons.lang.builder.HashCodeBuilder;

/**

 * Interval of comparable items. Instances of this class

 * are immutable.

 *

 * @author Rong Chen

 * @version 1.0

 */

public final class Interval {

 /**

 * Constructs an Interval

 *

 * @param lower null if unbounded

 * @param upper null if unbounded

 * @throws IllegalArgumentException if lower > upper

 */

 public Interval(Comparable lower, Comparable upper) {

 if (lower != null && upper != null

 && upper.compareTo(lower) < 0) {

 throw new IllegalArgumentException("lower > upper");

 }

 this.lower = lower;

 this.upper = upper;

 }

 /**

 * Returns the lower boundary of this Interval

 *

 * @return null if unbounded

 */

 public Comparable getLower() {

 return lower;

 }

 /**

 * Returns the upper boundary of this Interval

 *

 * @return null if unbounded

 */

 public Comparable getUpper() {

 return upper;

 }

 /**

 * Returns true if lower boundary open

 *

 * @return true if has lower boundary

 */

 public boolean isLowerUnbounded() {

 return lower == null;

 }

 /**

 * Returns true if upper boundary open

 *

 * @return true if has upper boundary

 */

 public boolean isUpperUnbounded() {

 return upper == null;

 }

 /**

 * Returns true if (lower >= value and value <= upper)

 *

 * @param value to compare to

 * @return ture if given value is included in this Interval

 * @throws IllegalArgumentException if value is null

 */

 public boolean has(Comparable value) {

 if (value == null) {

 throw new IllegalArgumentException("null value");

 }

 return (lower == null || value.compareTo(lower) >= 0)

 && (upper == null || value.compareTo(upper) <= 0);

 }

 /**

 * Equals if two Intervals have same values for lower and

 * upper boundaries

 *

 * @param o the object to compare with

 * @return true if equals

 */

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Interval)) return false;

 final Interval interval = (Interval) o;

 return new EqualsBuilder()

 .append(upper, interval.upper)

 .append(lower, interval.lower)

 .isEquals();

 }

 /**

 * Return a hash code of this Interval

 *

 * @return hash code

 */

 public int hashCode() {

 return new HashCodeBuilder()

 .append(upper)

 .append(lower)

 .toHashCode();

 }

 /**

 * Return string representation of this Interval. The string

 * consists of both lower and upper boundary, if any of them

 * is not specified, "unbounded" is provided.

 *

 * @return string representation

 */

 public String toString() {

 StringBuffer buf = new StringBuffer("Interval [lower: ");

 buf.append(lower == null ? "unbounded" : lower);

 buf.append(", upper: ");

 buf.append(upper == null ? "unbounded" : upper);

 buf.append("]");

 return buf.toString();

 }

 /* fields */

 private final Comparable lower;

 private final Comparable upper;

}

C. Sample Code of unit testing of Interval

/**

 * IntervalTest

 *

 * @author Rong Chen

 * @version 1.0

 */

package se.acode.openehr.support.basic;

import junit.framework.TestCase;

public class IntervalTest extends TestCase {

 public IntervalTest(String test) {

 super(test);

 }

 /**

 * The fixture set up called before every test method.

 */

 protected void setUp() throws Exception {

 }

 /**

 * The fixture clean up called after every test method.

 */

 protected void tearDown() throws Exception {

 }

 public void testConstructor() throws Exception {

 try {

 new Interval(new Integer(10), new Integer(1));

 fail("should throw illegal argument exception");

 } catch (Exception ignored) {

 }

 }

 public void testHas() throws Exception {

 // array of { lower(0:unbounded), upper(0:unbounded),

 // testValue, expected (1:true, 0:false) }

 int[][] data = {

 {1, 8, 2, 1},

 {1, 8, 1, 1},

 {1, 8, 8, 1},

 {1, 8, 0, 0},

 {1, 8, 9, 0},

 {0, 8, 4, 1},

 {0, 8, -1, 1},

 {0, 8, 9, 0},

 {1, 0, 4, 1},

 {1, 0, 1, 1},

 {1, 0, -1, 0}

 };

 for (int i = 0; i < data.length; i++) {

 Interval iv = new Interval(popInt(data[i][0]),

 popInt(data[i][1]));

 boolean actual = iv.has(new Integer(data[i][2]));

 boolean expected = data[i][3] == 1;

 assertTrue("failed at " + testString(data[i]),

 actual == expected);

 }

 }

 private Integer popInt(int value) {

 if (value == 0) {

 return null;

 }

 return new Integer(value);

 }

 private String testString(int[] row) {

 return "(" + row[0] + ", " + row[1] + ") has " +

 row[2]

 + ": " + (row[3] == 1);

 }

 public void testToString() throws Exception {

 int[][] data = {

 {10, 100}, {0, 100}, {-20, 0}, {0, 0}

 };

 String[] expected = {

 "Interval [lower: 10, upper: 100]",

 "Interval [lower: unbounded, upper: 100]",

 "Interval [lower: -20, upper: unbounded]",

 "Interval [lower: unbounded, upper: unbounded]"

 };

 for (int i = 0; i < data.length; i++) {

 assertEquals(expected[i] + " expected",

 expected[i],

 new Interval(popInt(data[i][0]),

 popInt(data[i][1])).toString());

 }

 }

 public void testEquals() throws Exception {

 Interval interval = new Interval(new Integer(-1), new

Integer(10));

 Interval interval2 = new Interval(new Integer(-1), new

Integer(10));

 assertEquals(interval, interval2);

 // not equals expected

 int[][] data = {

 {-1, 9}, {2, 10}, {0, 10}, {-1, 0}, {0, 0}

 };

 for(int i = 0; i < data.length; i++) {

 interval2 = new Interval(popInt(data[i][0]),

 popInt(data[i][1]));

 assertFalse(interval2.toString(),

interval.equals(interval2));

 assertFalse(interval2.toString(),

interval2.equals(interval));

 }

 }

}

	openEHR Reference Model Java ITS
	Revision History
	Acknowledgments
	1 Introduction
	1.1 Purpose
	1.2 Related Documents

	2 Background
	2.1 Scope
	2.2 Guideline Criteria
	2.3 Java Platform

	3. Assumed Types
	4. Naming Convention
	5. Generic Types
	6. Design By Contract
	7. Value Object
	8. Immutable Object
	9. Exceptions
	10. Multiple Inheritance
	11. Abstract attributes
	12. Operator Overloading
	13. Index
	14. String Representation
	14.1 XML representation

	15. Comparable
	16. Implementations from Java API
	17. External APIs
	A.1 General
	A.2 openEHR
	A.3 Java

	B. Sample implementation of Interval
	C. Sample Code of unit testing of Interval

